

This article was downloaded by:

On: 25 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Thin-Layer Chromatography of Cu(II), Co(II) and Ni(II)

Xiashi Zhu^a; Heng Zhang^a; Baosheng Wang^a

^a Department of Chemistry, Yangzhou University, Yangzhou, P. R. China

To cite this Article Zhu, Xiashi , Zhang, Heng and Wang, Baosheng(2005) 'Thin-Layer Chromatography of Cu(II), Co(II) and Ni(II)', Separation Science and Technology, 40: 16, 3289 – 3298

To link to this Article: DOI: 10.1080/01496390500423649

URL: <http://dx.doi.org/10.1080/01496390500423649>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Thin-Layer Chromatography of Cu(II), Co(II) and Ni(II)

Xiashi Zhu, Heng Zhang, and Baosheng Wang

Department of Chemistry, Yangzhou University, Yangzhou, P. R. China

Abstract: The chromatographic behavior of some heavy metals on thin layer of silica gel was studied. The effect of polarity of mixed developing agent systems on the R_f values of metal complexes was investigated. The linear dependence between the R_f values and the polarity of developing agents was deduced and a series of good separations of Cu(II), Co(II) and Ni(II) were obtained successfully. This method was applied to separate Cu(II) and Ni(II) in a real sample.

Keywords: Thin-layer chromatography, dithizonates

INTRODUCTION

With the aggravation of environmental pollution, people pay more attention to the analysis of the poisonous heavy metals ions in environment. Many analytical methods have been applied to this field, such as the atom absorption spectrometry (1), polarography (2), stripping voltammetry (3), ICP-AES (4), and X-ray fluorescence spectrometry (5). However, the concentration of the metal ions in environment are usually very low and some kin metals are usually concomitant, such as Ni^{2+} , Co^{2+} , Zn^{2+} , Pb^{2+} , and Cu^{2+} etc., so preconcentration and preseparation are usually needed in actual work, for example, precipitation separation (6), solvent extraction (7), vaporization and distillation (8), membrane separation (9) and polymeric syntheticresin for separation (10) etc. But the preparation with the above methods usually

Received 25 January 2005, Accepted 14 September 2005

Address correspondence to Xiashi Zhu, Department of Chemistry, Yangzhou University, Yangzhou 225002, P. R. China. Tel.: +86-514-7975568; Fax: +86-514-7975244; E-mail: xszhu@yzu.edu.cn or zhuxiashi@sina.com

has medium influence or elements interference, so the selectivity of the determination is restricted.

Thin-layer chromatography (TLC) was used by N.A. Izmailov and M.S. Schraiber in 1938 first and developed on the basis of classical column chromatography and paper chromatography by J.G. Kirchner etc. in the 1950s. It made more quickly progress after Stahl had improved instrument equipments, adsorbent specification and operating mode in 1956 (11). The attractive features of TLC include simple preparation; without requirement of special equipment; parallel sample processing for high sample throughput; accessibility of the sample for post-chromatographic evaluation free of time constraints. Now, the separation objects are primarily in the aspects of medicine and biology (12–14). TLC for separation of metal ions mainly includes: ion exchange thin-layer chromatography (15); partition thin-layer chromatography (16); adsorption thin-layer chromatography (17). The main influence factors for thin-layer chromatography are:

1. property of the separated material, such as solubility, acidity, polarity etc.,
2. adsorbent,
3. developing agents.

The adsorbents used commonly are only a few, but the kinds of developing agents are numerous and their admixtures are countless. The key for TLC is to select the right developing agent that matches the separated material and adsorbent. But systemic studies on mixed developing agents are few. In this paper, 10 developing agents and their mixture were chosen to investigate the effect of solvent polarity on the R_f values of metal complexes. Finally, a proper solvent system was selected for separation of Cu^{2+} , Co^{2+} , and Ni^{2+} . The graphite furnace atomic absorption spectrometry (GFAAS) was coupled to determine trace Cu^{2+} and Ni^{2+} in real samples.

EXPERIMENTAL

Reagents and Apparatus

Silica gel GF₂₅₄(ocean chemical plant, Qingdao); Saturated dithizone in CCl_4 ; Standard solutions (1.0 mg/mL) of $Zn^{(II)}$, $Fe^{(II)}$, $Co^{(II)}$, $Ni^{(II)}$, $Cu^{(II)}$, $Pb^{(II)}$, $Cd^{(II)}$, $Bi^{(III)}$, $Cr^{(VI)}$, $Ag^{(I)}$; Developing agent: benzene, toluene, CCl_4 , $CHCl_3$, CH_2Cl_2 , ethyl acetate, dioxane, THF, $n-C_4H_9OH$, $n-C_5H_{11}OH$; Buffer solution: 0.05M HAc/NaAc (pH = 4.4), 0.075M borax (pH = 8.0), 0.025M $NaHCO_3/Na_2CO_3$ (pH = 9.8). All the chemicals were of analytical grade. National reference materials (Beijing, China)

Graphite furnace atomic absorption spectrometer (WFX-210, Ruili analysis instrument company, Beijing), pH meter(pHS-25 mode, Shanghai).

Procedure

Preparation of Thin Layer Plate

Silica gel GF₂₅₄ and NaAc (mass ratio is 40:1) in 0.2% carboxymethyl cellulose sodium solution was equably coated on glass plates, air dried, stored in desiccator.

Chromatographic Separation

A 50 μ L standard solution of metal ion, 2.0 mL buffer solution, and proper dithizone solution were transferred into separating funnel, oscillated, demixed, then the organic phase was spotted on the plate, finally spotted plates were placed in a chromatographic chamber until the developing agent front traveled about 10 cm.

Sample Handling

A 1000 mL water sample was filtrated and then concentrated to 100 mL.

Quantitative Analysis

After layer developed spots were scrapped to graduation centrifuge tube, dissolved by addition of 1.0 mL 5% HCl, oscillated, and centrifugal separated, the upper clear solution was analyzed by graphite furnace atomic absorption spectrometry under the conditions of Table 1.

RESULTS AND DISCUSSION

Selection of pH

The metal ions were reacted with dithizone solution respectively in three buffer solutions: HAc/NaAc (pH = 4.4), borax (pH = 8.0),

Table 1. Operating conditions for GFAAS

Element	Cu	Ni
Wavelength/mm	324.7	232.2
Slit/nm	0.4	0.2
HCL.Current/mA	3	3
Graphite Furnace		
Dry temp/°C	100	100 (ramp 10 s, hold 20 s)
Ashing temp/°C	400	600 (ramp 20 s, hold 10 s)
Atomization temp/°C	2400	2600 (ramp 0 s, hold 5 s)
Cleaning temp/°C	2600	2700 (ramp 0 s, hold 2 s)

$\text{NaHCO}_3/\text{Na}_2\text{CO}_3$ ($\text{pH} = 9.8$). Results showed that at $\text{pH} = 4.4$ complexes were stable including Ag^+ and Cr(VI) , at $\text{pH} = 8.0$ complexes were stable including Ni^{2+} , Co^{2+} , Cd^{2+} and Fe^{3+} , at $\text{pH} = 9.8$ complexes were stable including Ni^{2+} , Co^{2+} , Zn^{2+} , Pb^{2+} , Cu^{2+} and Bi^{3+} . So each ion was reacted with dithizone at the proper pH respectively.

The Amount of Dithizone

When dithizone is superfluous it will cover up the color of complexes, because the color of dithizone is dark, and spots will form tailing. So volume of dithizone solution chosen was 0.5 mL.

Single Developing Agent Systems

In considering the property of metallic dithizonates, 10 developing agents whose polarity parameter was less than 5.0 were chosen. They were benzene, toluene, CCl_4 , CHCl_3 , CH_2Cl_2 , ethyl acetate, dioxane, THF, $n\text{-C}_4\text{H}_9\text{OH}$, $n\text{-C}_5\text{H}_{11}\text{OH}$. The results are given in Table 2, which showed: (1) The R_f values of 10 metal complexes were all 0 when developed with CCl_4 (2). The R_f values of Co^{2+} , Ni^{2+} and Cu^{2+} were 0.44, 0.61, 0.68 respectively when developed with benzene toluene, and the R_f values were 0.66, 0.79, 0.82 respectively when developed with benzene. The R_f values of Ni^{2+} and Cu^{2+} were close, their separation was not entire. The other 7 metal complexes were decomposed in the process of developing (3). The R_f values of 10 metal complexes all were 1 when developed with the other seven developing agents. The effect of the polarity of developing agents on the R_f values of metal complexes is obvious. It could be seen from the above data that Ni^{2+} and Cu^{2+} could not be separated in a single developing agent, so it is necessary to select a properly mixed developing agent system.

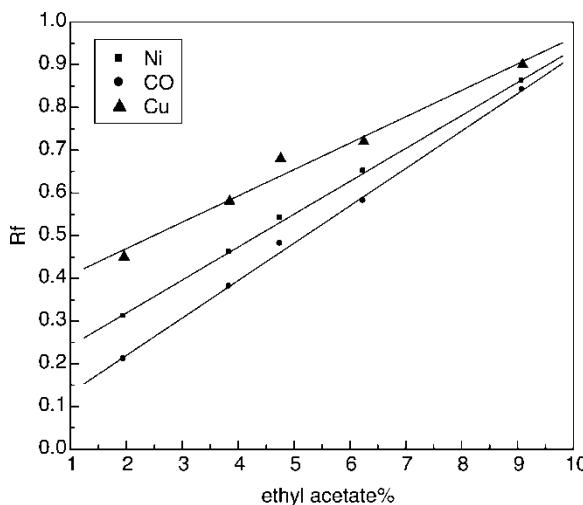
Mixed Developing Agent Systems

An ideal separation requires the spots to be clear, concentrative and the R_f values in the range of 0.2–0.8. In order to obtain the proper solvent system

Table 2. R_f values of ions in various developing agent

Ions	CCl_4	Benzene	Toluene	CH_2Cl_2 , CHCl_3	Ethyl acetate, dioxane, THF $n\text{-C}_4\text{H}_9\text{OH}, n\text{-C}_5\text{H}_{11}\text{OH}$
Co^{2+}	0	0.66	0.44	≈ 1	≈ 1
Ni^{2+}	0	0.79	0.61	≈ 1	≈ 1
Cu^{2+}	0	0.82	0.68	≈ 1	≈ 1
M^a	0	Decompose	Decompose	Decompose	≈ 1

^a $\text{M} = \text{Ag}^+$, Cr(VI) , Cd^{2+} , Fe^{3+} , Zn^{2+} , Pb^{2+} , Bi^{3+} .


that can separate Co^{2+} , Ni^{2+} and Cu^{2+} , the nonpolar developing agent and the other polar developing agents were selected as mixed developing agent systems. The concentration of polar developing agents altered to obtain the relation of the polarity of developing agents with the R_f values and to find the concentration range of developing agent that the complexes could be separated efficiently.

The Mixed Developing Agent Systems of Ethyl Acetate/ CCl_4 and Dioxane/ CCl_4

Altering the concentration of ethyl acetate and dioxane in mixed developing agent systems of ethyl acetate/ CCl_4 and dioxane/ CCl_4 the dithizonates of Co^{2+} , Ni^{2+} and Cu^{2+} were investigated. The effect of polar developing agents concentration in mixed solvent on the R_f values was shown in Figs.1 and 2. It could be seen that the increasing of the polarity of solvents concentration resulted in increased R_f values in low concentration, and the R_f values tended to 1 at the concentration of 10%. Co^{2+} , Ni^{2+} , and Cu^{2+} could be separated in the concentrate range of 2.0%–8.0%. The linear equation between the R_f values and the concentration of polar developing agents are present in Tables 3 and 4. The separation effect in mixed developing agents is better than single developing agents.

The Mixed Developing Agent Systems of Benzene/ CCl_4 and Toluene/ CCl_4

Altering concentration of benzene and toluene in mixed developing agent systems of benzene/ CCl_4 and toluene/ CCl_4 , the developing results of

Figure 1. Effect of ethyl acetate concentration in mixed solvent on R_f values.

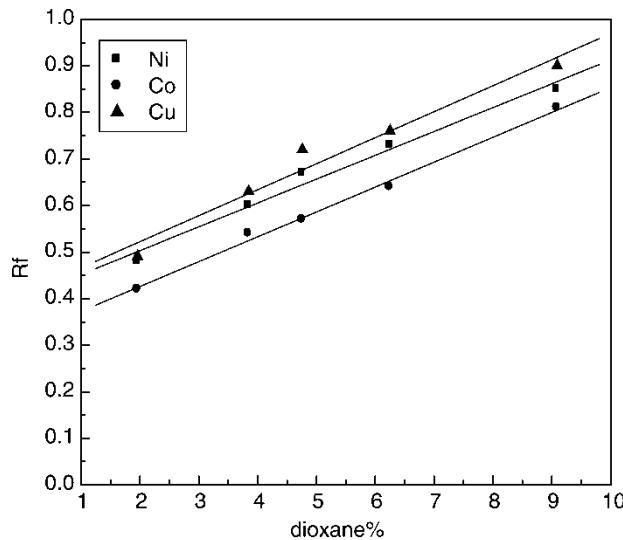


Figure 2. Effect of dioxane concentration in mixed solvent on R_f values.

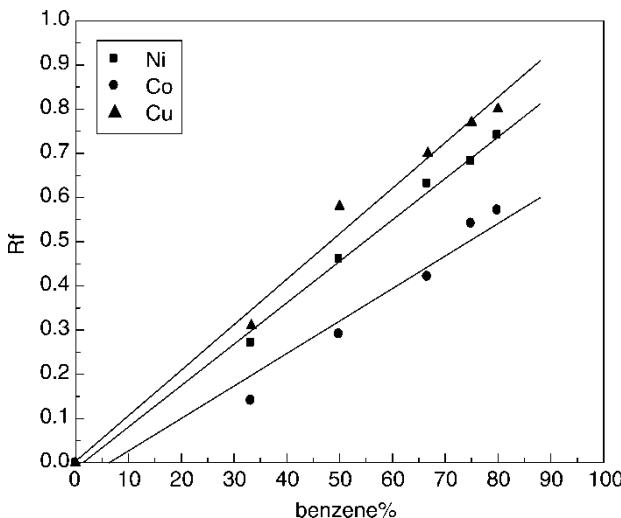
metallic dithizonates in mixed developing agent systems were shown in Figs. 3 and 4. The results showed that Co^{2+} , Ni^{2+} , and Cu^{2+} had a better resolution than in single developing agents and in mixed developing agent systems of ethyl acetate/CCl₄ and dioxane/CCl₄, especially Ni^{2+} and Cu^{2+} . The R_f values of the complexes increased with the polarity of solvents increasing and it was linearly increment when the concentration lower than 80%. The separation range was wider than in ethyl acetate/CCl₄ and dioxane/CCl₄ mixed system, and the R_f values of complexes of Co^{2+} , Ni^{2+} , and Cu^{2+} are more different. The linear equation between the R_f values and the concentration of polar developing agents are present in Tables 5 and 6. This proved that the stronger polarity of developing agents results in stronger eluting power and the bigger R_f value in normal-phase chromatography. 66.7% toluene in CCl₄ was selected as the developing agent to separate Cu^{2+} and Ni^{2+} .

Table 3. R_f values of metal ions in mixed solvent of ethyl acetate

Ions	Ethyl acetate	Ethyl acetate + CCl ₄ (ethyl acetate % = 3.8%)	Equation 2.0% < ethyl acetate % < 9.1%
Co^{2+}	0.99	0.38	$R_f = 0.01324 + 9.21242C_{\text{ethyl acetate}}$
Ni^{2+}	0.99	0.46	$R_f = 0.07405 + 9.11732C_{\text{ethyl acetate}}$
Cu^{2+}	0.91	0.58	$R_f = 0.34475 + 6.1779C_{\text{ethyl acetate}}$

Table 4. R_f values of metal ions in mixed solvent of dioxane

Ions	Dioxane	Dioxane + CCl_4 (dioxane% = 4.8%)	Equation $2.0\% < \text{ethyl acetate}$ % < 9.1%
Co^{2+}	0.99	0.67	$R_f = 0.31865 + 5.33356C_{\text{dioxane}}$
Ni^{2+}	0.99	0.57	$R_f = 0.39968 + 5.12161C_{\text{dioxane}}$
Cu^{2+}	0.99	0.72	$R_f = 0.40946 + 5.58721C_{\text{dioxane}}$


Working Curve, Limits of Detection and Precision

According to this experimental method, Ni^{2+} and Cu^{2+} were separate at $pH = 9.8$ and were determined by GFAAS, the results of which are shown in Table 7. The working curve was linear over the range of $0\text{--}500 \text{ ng} \cdot \text{mL}^{-1}$. The LODs are expressed as three times the standard deviation of the blank. The relative standard deviation (R.S.D.) was determined at the concentration of $200 \text{ ng} \cdot \text{mL}^{-1}$ ($n = 3$).

Sample Determination

Determination of Ni^{2+} and Cu^{2+} in Environmental Reference Material

According to this method, Ni^{2+} and Cu^{2+} in environmental reference material were separated and determined. The results are shown in Table 8. The measured values were in good agreement with the certified values.

Figure 3. Effect of benzene concentration in mixed solvent on R_f values.

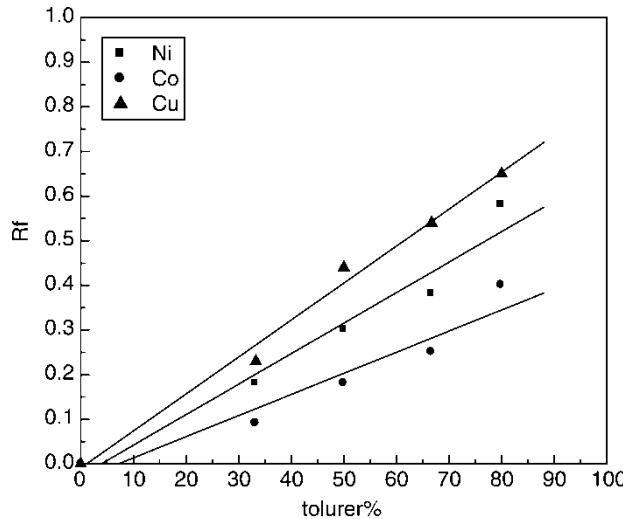


Figure 4. Effect of toluene concentration in mixed solvent on R_f values.

Table 5. R_f values of ions in mixed solvent of C_6H_6

Ions	Benzene	Benzene + CCl_4 (benzene = 50%)	Equation (benzene = 80%)
Co^{2+}	0.66	0.29	$R_f = 0.04685 + 0.00735C_{benzene}$
Ni^{2+}	0.79	0.46	$R_f = 0.01291 + 0.00937C_{benzene}$
Cu^{2+}	0.82	0.58	$R_f = 0.00342 + 0.01029C_{benzene}$

Table 6. R_f values of ions in mixed solvent of C_7H_8

Ions	Toluene	Toluene + CCl_4 (toluene% = 66.7%)	Equation (toluene% = 80%)
Co^{2+}	0.44	0.25	$R_f = -0.0337 + 0.00473C_{toluene}$
Ni^{2+}	0.61	0.38	$R_f = -0.02636 + 0.00683C_{toluene}$
Cu^{2+}	0.68	0.54	$R_f = -0.00899 + 0.00828C_{toluene}$

Table 7. Working curve, detecting limit and precision

Ions	Linear equation	R	LOD ($ng \cdot mL^{-1}$)	R.S.D. $C = 200 ng \cdot mL^{-1}, n = 3$
Cu^{2+}	$A = 0.01825 + 0.0034c$	0.9967	0.37	4.9%
Ni^{2+}	$A = 0.0111 + 0.00281c$	0.9988	0.74	3.1%

Table 8. Determination of Cu^{2+} and Ni^{2+} in standard water

Sample	Ions	Measured ($\mu\text{g/mL}$)	Certified ($\mu\text{g/mL}$)
GBW(E)080194 ^a	Cu^{2+}	40.62 ± 1.03	40.65 ± 2.35
	Ni^{2+}	31.55 ± 1.47	33.15 ± 2.00

^aNational reference materials (China).

Table 9. Determined results and the percent recovery of this method

Sample	Ions	Found $\mu\text{g} \cdot \text{mL}^{-1}$	Added $\mu\text{g} \cdot \text{mL}^{-1}$	Determined $\mu\text{g} \cdot \text{mL}^{-1}$	Recovery %
Distilled water	Cu^{2+}	ND ^a	3.0	2.95	98.3%
			5.0	4.91	98.1%
	Ni^{2+}	ND ^a	3.0	2.98	99.3%
			5.0	4.74	94.7%
Lake water	Cu^{2+}	0.98	4.0	4.83	97.0%
			6.0	7.11	101.9%
	Ni^{2+}	0.93	4.0	4.68	94.9%
			6.0	6.40	92.4%

^aNot detected.

Determination of Real Sample

The proposed method was applied to the determination of Ni^{2+} and Cu^{2+} in distilled water and Slender West Lake water. The standard addition method was used. The analytical results and the recovery are present in Table 9. The good recovery results had been obtained.

CONCLUSIONS

In this paper, the influence of the polarity of developing agents on the R_f values had been investigated. The R_f values increased with the polarity of solvents increasing in normal phase chromatography, and it was linear increasing in definite range. According to the quantificational relation of the R_f values with the polarity of developing agents, the R_f values could be controlled in the ideal separating range and the separation effect would be better. In the benzene/CCl₄ and toluene/CCl₄ mixed developing agent systems, the R_f values of complexes of Co²⁺, Ni²⁺, and Cu²⁺ were different than in single developing agents. Trace Cu²⁺ and Ni²⁺ in environmental reference material and in water sample were determined successfully and the results were satisfactory.

REFERENCES

1. Lemos, V.A., Santos, W.N.L., Santos, J.S., and Carvalho, M.B. (2003) *Anal. Chim. Acta.*, 481: 283–290.
2. Omanovic, D. and Branica, M. (2003) *Journal of Electroanalytical Chemistry.*, 543: 83–92.
3. Biscombe, A., Nimmo, M., Gledhill, M., and Achterberg, E. (2004) *Anal. Chim. Acta.*, 521: 69–76.
4. Pohl, P. and Prusisz, B. (2004) *Anal. Chim. Acta.*, 502: 83–90.
5. Pouzar, M., Cernohorsky, T., and Krejcova, A. (2001) *Talanta.*, 54: 829–835.
6. Burguera, J.L., Burguera, M., Rondon, C., Carrero, P., Brunetto, M.R., and Pena, Y.P. (2000) *Talanta.*, 52: 27–37.
7. Dominik, P. and Kaupenjohann, M. (2000) *Talanta.*, 51: 701–707.
8. Dash, K., Karunasagar, D., Thangavel, S., and Chaurasia, S.C. (2003) *Journal of Chromatogr. A.*, 1002: 137–144.
9. Keuler, J.N. and Lorenzen, L. (2002) *Journal of Membrane Science.*, 202: 17–26.
10. Amico, D.B.D. et al. (2000) *Journal of Molecular catalysis A: Chemical.*, 157: 173–181.
11. Stahl, E. (1965) *Thin layer chromatography*, 1st Ed; Springer Verlag/Academic Press.
12. Dean, J.R., Wade, G., and Barnabas (1996) *Journal of Chromatogr. A.*, 733: 295–335.
13. Oprean, R., Tamas, M., and Roman, L. (1998) *Journal of Pharmaceutical and Biomedical Analysis.*, 18: 227–234.
14. Donghui and Jinhua (2002) *Physical Testing and Chemical Analysis. Part B: Chemical Analysis (Chinese)*, 38 (50): 265–270.
15. Suzhengquang, Fenghuijia, and Yinbohai (1997) *Ion Exchange and Adsorption (Chinese)* 13 (15): 459–465.
16. Leiqijian and Wuzonghe (1998) *Hunan Chemical Industry (Chinese)* 28 (5): 40–42.
17. Shuangshaoming, Zhangshengwan, and Huxiaoyan (1997) *Journal of Shangxi University, (Natural Science Edition) (Chinese)*. 20 (4): 405–408.